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Abstract 
 Most automatic registration methods are either 
correlation-based, feature-based, or a combination of 
both. Examples of features which can be utilized for 
automatic image registration are edges, regions, 
corners, or wavelet-extracted features. In this paper, 
we describe two proposed approaches, based on edge 
or edge-like features, which are very appropriate to 
highlight regions of interest such as coastlines. The 
two iterative methods utilize the Normalized Cross-
Correlation of edge and wavelet features and are 
applied to such problems as image-to-map registration, 
landmarking, and channel-to-channel co-registration, 
utilizing test data, AVHRR data, as well as GOES 
image data. 
 
  
1. Introduction 
 
 Digital image registration is very important in 
many applications of image processing, such as 
medical imagery, robotics, visual inspection, and 
remotely sensed data processing. For all of these 
applications, image registration is defined as the 
process which determines the most accurate match 
between two or more images acquired at the same or at 
different times by different or identical sensors. 
Registration provides the "relative" orientation of two 
images (or one image and other sources, e.g., a map), 
with respect to each other, from which the absolute 
orientation into an absolute reference system can be 
derived. Image registration is usually motivated by 
such goals as object recognition, model matching, 
pose estimation, or change detection. In this paper, we 
will only refer to remote sensing applications, for 
which automated image geo-registration has become a 
highly desirable technique. 
 
 Currently, the most common approach to remotely 
sensed image registration is to extract a few 
outstanding characteristics of the data, which are 
called control points (CP's), tie-points, or reference 
points. The CP's  (usually selected interactively) in 
both images (or image and map) are matched by pair 
and used to compute the parameters of a geometric 
transformation. But such a point selection represents a 
repetitive, labor- and time-intensive task which 
becomes prohibitive for large amounts of data. Also, 

too few points, inaccurate points, or ill-distributed 
points might be chosen thus leading to large 
registration errors. Recently,  a relatively important 
number of automatic image registration methods have 
been developed [1,2], and they focus on the automatic 
selection of the control points, on the speed of 
processing as well as on the accuracy of the resulting 
registration. Most automatic registration methods are 
either correlation-based, feature-based, or a 
combination of both. Examples of features which are 
utilized for registration are edges, regions, corners, or 
wavelet-extracted features  
 
 In this paper, we describe two proposed 
approaches based on edge or edge-like features, which 
are very appropriate to highlight regions of interest 
such as coastlines. These two algorithms perform 
automatic image registration in an iterative manner, 
first estimating the parameters of the transformation, 
and then iteratively refining these parameters. 
Preliminary results are presented utilizing test data, as 
well as map-to-image registration of AVHRR image 
data, and landmarking and co-registration of GOES 
data. 
 
2. Edge- and Wavelet-Based Registrations 
 
 Among all potential features to utilize as control 
points, edges and edge-like features appear as ones of 
the most promising. Often, a human operator will 
choose sharp curvatures in coastlines or rivers, the 
intersections of two roads or the coastline of a lake as 
control points to perform manual registration. The 
initial approaches presented in this paper are based on 
these observations as well as on the conclusions of 
three previous studies [3,4,5] which compare manual 
registration, edge matching, and phase correlation. All 
these converge to conclude that edge or edge-like 
features are very appropriate to highlight regions of 
interest such as coastlines. In one of these studies [4], 
the Normalized Cross-Correlation [6] is rated as one of 
the best matching measures. Therefore, in this study 
we present the results obtained by two methods based 
on the Normalized Cross-Correlation of edge and 
wavelet features. 
 
 2.1 Edge Detection 



 

 An edge detection computes the gradient of the 
original gray levels and highlights the pixels of the 
image with higher contrast. Since edge values are less 
affected  by  local intensity variations or time-of-the 
day conditions than original gray level values, edge 
features should be more reliable than original gray 
levels. Figure 1 shows on an example of a coastline 
how edge detection can be useful to detect the exact 
location of the edge point A located on the coastline: if 
we draw a line perpendicular to the coastline at point 
A, and we consider the function representing the 
intensity of the image points along this line, we get a 
function which is about constant over the land, jumps 
down at the edge and gets constant again over the 
water. If we compute the gradient (or first derivative) 
of this function, we get a edge function which is about 
zero everywhere except around the edge point where it 
reaches a maximum. Locating this maximum is 
equivalent to finding the edge point, i.e. the coastline 
point A in this example. 
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Figure 1 

Edge Detection for Coastlines Extraction 
 
 In the method presented below, we will be using a 
Sobel edge detector which computes the gradient (or 
first derivative) of the 2-D image signal through two 
filters, an horizontal filter, Fh and a vertical filter, Fv: 
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The magnitude of the gradient is computed as: 
 M= Sqrt(Fv2 + Fh2) 
and the direction at each point is computed as: 
 D= Arctg(Fv/Fh). 
Higher magnitudes values of M correspond to edge 
features including coastlines. Other edge detection 
methods [7,8], computationally more expensive but 
less sensitive to noise, will be investigated later. 
 
 2.2. Wavelet Decomposition 
 Similarly to a Fourier transform, wavelet 
transforms provide a time-frequency representation of 
a signal, which can be inverted for later reconstruction. 

However, the wavelet representation allows a better 
spatial localization as well as a better division of the 
time-frequency plane than a Fourier transform, or than 
a windowed Fourier transform. In a wavelet 
representation, the original signal is filtered by the 
translations and the dilations of a basic function, called 
the “mother wavelet”. For the algorithm described 
below, only discrete orthonormal basis of wavelets 
have been considered and have been implemented by 
filtering the original image by a high-pass and a low-
pass filter, thus in a multi-resolution fashion. At each 
level of decomposition, four new images are 
computed; each of these images is half the size of the 
previous original image and represents the low 
frequency or high frequency information of the image 
in the horizontal or/and the vertical directions; images 
LL (Low/Low), LH (Low/High), HL(High/Low), and 
HH (High/High) of Table 1. Starting again from the 
"compressed" image (or image representing the low-
frequency information), the process can be iterated, 
thus building a hierarchy of lower and lower 
resolution images. Table 1 summarizes the multi-
resolution decomposition. 
 

F represents the convolution of the input image by the filter F,

2 1 1 2and are the decimations by 2 

in rows and columns, respectively.

next 

level 

decom-

position

Original or

LL of 

previous level

Rows

2 1

LL

Columns

L

1 2

1 2

2 1H

1 2

1 2

L

L

LH

HL

HH

H

H

...

Table 1 
Multi-Resolution Wavelet Decomposition 

 
 The features provided through this type of wavelet 
decomposition are of two different types: the low-pass 
features which provide a compressed version of the 
original data and some texture information, and the 
high-pass features which provide detailed information 
very similar to edge features. The advantages of using 
a wavelet decomposition are twofold; (a) by 
considering the low-pass information, one can bring 
different spatial resolution data to a common spatial 
resolution without losing any significant features, 
which is very useful for channel-to-channel co-
registration or registration of multi-resolution data, (b) 
by utilizing high-pass information, one can retrieve 
significant features which are correlated in the 
registration process, similarly to edge features. When 
these features are extracted at a lower resolution, only 
the strongest features are still present, thus eliminating 
weak higher resolution features.  Furthermore, 
utilizing wavelet transforms ties wavelet-based 
registration algorithms to a more general data 
management framework [9], in which wavelet 



 

decomposition could serve the multi-purpose of image 
compression, reconstruction, and content extraction as 
well as image registration. 
 Our wavelet-based registration algorithm 
[2,10,11] is based on the high-frequency information 
extracted from the wavelet decomposition (images 
“LH” and “HL” from Table 1). Only those points 
whose intensities belong to the top x% of the 
histograms of these images are kept (x being a 
parameter of the program whose selection can be 
automatic); we call these points “maxima of the 
wavelet coefficients,” and these maxima form the 
feature space.  
 
 2.3 Feature Matching 
 Correlation measurement is the usual similarity 
metric [6], although it is computationally expensive 
and noise sensitive when used on original gray level 
data. Using a pre-processing such as edge detection or 
a wavelet multi-resolution search strategy enables 
large reductions in computing time and increases the 
robustness of the algorithms. If R and I are the 
reference and the input images, the correlation 
measure between R and I is defined by: 

Corr(R,I) = 
!((Rj-R*).(Ij-I*))

!(Rj-R*)2 . !(Ij-I*)2

 
with R* and I* are the mean of images R and I, 
respectively. Other similarity metrics are described in 
[12] and will be evaluated in future work as well as the 
use of a robust feature matching algorithm which is 
described in [13]. 
 
 2.4 Description of the Two Algorithms 
 In general, we will assume the transformation to 
be either a rigid or an affine transformation. Although 
high-order polynomials are superior to isometric 
transformations  when the deformation includes more 
than a translation and a rotation, isometric 
transformations are more accurate when a smaller 
number of points is available and are less sensitive to 
noise and to largely inconsistent tie-points. Both types 
of transformations include compositions of 
translations and rotations; therefore, as a preliminary 
study, our search space is composed of rigid 
transformations for the edge-based method and 
compositions of 2-D rotations and translations for the 
wavelet-based method, and will be extended later to 
affine transformations. Both edge- and wavelet-
based methods represent a three-step approach to 
automatic registration of remote sensing imagery. The 
first step involves the edge extraction or the wavelet 
decomposition of the reference and input images to be 
registered. In the second step, we extract domain 
independent features from both reference and input 
images. In the wavelet method, feature extraction is 
performed at each decomposition level. Finally, we 
utilize these features to compute the transformation 

function. Both methods perform the registration in an 
iterative manner, first estimating the parameters of the 
deformation transformation, and then iteratively 
refining these parameters.  
 For the edge-based implementation, we chose to 
model the transformation as a combination of a scaling 
in both directions (dsx,dsy), a rotation (dΘ), and a 
shift or translation (dtx,dty)in both directions. This 
algorithm is based on the assumption that rotation 
angle and scaling parameters are small (within 5 
degrees for the rotation angle and within [0.9,1.1] for 
the scaling parameters). At the first iteration, the 
translation parameters are first extracted assuming 
rotation and scaling to be negligible. Then, knowing 
the translation parameters, the rotation angle is found, 
assuming the scaling negligible. Then scaling 
parameters are retrieved.  At each next iteration, the 
five parameters are retrieved simultaneously, by 
computing the cross-correlations for all successive 
values of the parameters taken at incremental steps. At 
each iteration, the accuracy on the transformation 
parameters is divided by two. So, if at the first 
iteration, the translation parameters are found at a 1 
pixel accuracy, the accuracy will be 0.5 pixel at 
iteration 2, 0.25 at iteration 3, etc. 
 
 For the wavelet-based method, the search 
intervals on the parameters can either be chosen 
arbitrarily or be reduced by the user utilizing a priori 
information about the sensor movement and the 
satellite navigation system. The search strategy is 
explained below when looking only for rotations and 
follows the multiresolution provided by the wavelet 
decomposition. At the deepest level of decomposition 
(where the image size is the smallest), the search is 
exhaustive over the whole search space (e.g., 
[0,90degrees]) but with an accuracy equal to Δ (e.g., 8 
degrees). The first approximation of the best rotation, 
Rn, is chosen over this search space; then Rn becomes 
the center of a new search interval of length 2Δ, [Rn - 
Δ , Rn + Δ], and at the next lower level, the new 
approximated rotation, Rn-1, is found within this 
search interval with an accuracy of Δ/2. This process is 
repeated until the first level of decomposition, where 
the search interval is [R2 - Δ/2**(n-2), R2 + Δ/2**(n-
2)] and the final registration rotation, R1, is found with 
an accuracy equal to Δ/2**(n-1). In particular, if δ is 
the desired registration accuracy (e.g., 1 degree), Δ is 
chosen as 2**(n-1) δ, where n is the number of levels 
of wavelet decomposition. In the case of an affine 
transformation, instead of looking for all parameters 
simultaneously, the search is performed over each set 
of parameters independently, first looking for shifts, 
then for rotations, etc. Such a use of successive 
“subsearches” reduces dramatically the amount of 
computations. Other solutions will be investigated, 
such as the use of an optimization technique or of a 
statistically robust point matching method [13]. 
 



 

 Below is a more general description of both 
registration algorithms using edge or wavelet features 
for AVHRR and GOES image data: 
 (R1) Preprocessing Step: The pre-processing step 

enhances the contrast of the features which are 
utilized to perform the registration. For some 
channels, gray levels may have to be inverted to 
consider  homogeneous computations. 

(R2)  Wavelet Decomposition: Since images to be 
registered may have different spatial 
resolutions, the wavelet decomposition step 
brings these images to a common spatial 
resolution without degrading the image quality. 
Wavelet decomposition is pursued further down 
if wavelet coefficients are used for the 
registration. 

(R3)  Registration: This step can be performed by 
cross-correlating either edge features or wavelet 
features. With either type of features, the 
registration is performed by: 

 (R3.1) Estimating independently the five 
parameters: rotation, shift in the x-direction, 
shift in the y-direction, scaling in x, and scaling 
in y. First the rotation and the scalings are 
assumed to be negligible and the shift in x and y 
are estimated. Then, taking into account the 
estimated shift, the two scaling parameters are 
neglected and the rotation angle is estimated. 
Then, after applying the previous shift and 
rotation parameters, the two scaling parameters 
are computed. These scaling parameters are 
kept constant for the rest of the search. 

 (R3.2) The three previous rotation and shift 
parameters are iteratively refined, at better and 
better accuracies. For example, if the first step 
looks at an accuracy of 2 degrees rotation, and 2 
pixels shift, four successive iterations  will look 
at the respective accuracies of 1 degree/1 pixel , 
0.5 degree/0.5 pixel, 0.25 degree/0.25 pixel. 

 
 The two differences between the edge-based 
registration and the wavelet-based registration reside 
in the type of features that are considered to perform 
the registration, edges versus wavelet coefficients, and 
in the size of the images on which the computations 
are carried out: for the edge-based registration, the full 
size images are utilized for every step. For the 
wavelet-based registration, the initial search is carried 
out on the lowest level of wavelet decomposition, i.e., 
the smallest size images, then each refinement is 
computed on the next size-up, with the final 
refinement being computed on the full size image. 
This last variation explains the difference in the 
number of operations needed for each algorithm, about 
480 floating point operations per pixel for the edge-
based registration versus about  200 floating point 
operations per pixel for the wavelet-based registration. 
      
3. Results 
 

 These two algorithms have been tested with four 
different types of datasets: 
- the first dataset represents synthetic test patterns 
where patterns and transformations are well-
controlled.  
- the second dataset is representative of multi-temporal 
studies and is formed with a series of AVHRR/LAC 
scenes over South Africa. For this application, a map 
of the coastlines is available so the images can be geo-
registered to the map. 
- the third dataset is an example of landmark 
navigation with a series of five GOES images of a 
landmark, “Cape Cod,” which are registered to a 
reference image (or “chip”) of this landmark.  
- the fourth dataset represent examples of channel-to-
channel co-registration (or calibration) with two 
series of five-channels GOES images for which 
channel-to-channel registration is performed. 
 
 3.1.  Test Data 
 Figure 2 represents seven different test patterns 
which have been utilized to test the edge-based  
registration method. This series of test patterns was 
created to test the response of our edge-based 
algorithm to edge directions, local intensity variations 
as well as texture variations. 
 
 A few preliminary experiments were conducted 
by applying two known transformations to the original 
image data (in this case, a composition of a rotation 
and a translation), and then registering the transformed 
images to the original image using the edge-based 
automatic registration. Results are shown in Table 3 
and indicate average absolute errors of 0.12 degree in 
rotation and 0.28 pixel in translation. Although these 
first results are very encouraging, the present size of 
the dataset is not sufficient to give any conclusions 
about the accuracy or the precision of the system, but 
it will be extensively tested in future experiments. 

 
TEST PATTERN "TRUE" TRANSFORM COMPUTED TRANSFORM ERROR=|true-computed |

(Rot: degrees   TranslX: pixels     TranslY: pixels)

(Rot      TX       TY) (Rot      TX       TY) (Rot      TX       TY)

GR ID2.2 .15 .15     (0.5        1.8        0.5)     (0.5        2.2        0.85)     (0            0.4       0.35)

    (1           0.5        1.5)     (1           0.95      1.9   )     (0            0.45     0.4  )

GR IDG2.2 .15.15     (0.5        1.8        0.5)     (0.5        1.85      0.5   )     (0            0.05     0      )

    (1           0.5        1.5)     (0.7        0.6        0.75)     (0.3         0.1       0.75)

GR ID5.5 .20 .20     (0.5        1.8        0.5)     (0.5        0.75      0.55)     (0            1.05     0.05)

    (1           0.5        1.5)     (1           0.6        1.55)     (0            0.1       0.05)

GR IDG5.5 .20.20     (0.5        1.8        0.5)     (0.5        2.2        0.45)     (0            0.4       0.05)

    (1           0.5        1.5)     (0.75      0.55     0.75)     (0.25      0.05     0.75)

R ING10.15     (0           0.8        0.2)     (0.15      0.65     0.25)     (0.15      0.15     0.05)

    (0           2           1    )     (-0.25    1.75     1.5   )     (0.25      0.25     0.5   )

R ING2 .20     (0           0.8        0.2)     (0.3         0.6        0.2  )     (0.3        0.2        0      )

    (0           2           1    )     (-0.45    0.75      1.35)     (0.45     1.25      0.35)

M O S A I C     (0.6        1.5        0.8)     (0.6         1.55      0.8  )     (0           0.05      0     )

    (1           0.6        1.5)     (1            0.65      1.5  )     (0           0.05      0     )

  Average Error Rotation:           0.12 Degrees

  Average Error Translation:      0.28 Pixels  
Table 3 



 

Results of the Automatic Edge-based Registration on the Test Patterns 
of Figure 2 

 
 3.2.  AVHRR Data (Image to Map) 
 The second dataset is a series of 13 512 rows by 
1024 columns AVHRR/LAC images over South 
Africa. Raw AVHRR data  are navigated and 
georeferenced to a geographic grid that extends from -
30.20 S, 15.39 E (upper left) -34.79 S, 24.59 E (lower 
right). The navigation process uses an orbital model 
developed at the University of Colorado [15] and 
assumes a mean attitude behavior (roll, pitch and yaw) 
derived using Ground Control Points [16]. A map of 
the coastline derived from the Digital Chart of the 
World (DCW) is generated for the same geographic 
grid. Figure 3 shows one image of this sequence 
superimposed with the map of the coastline. Note that 
in this case, there is a slight  misregistration. The 
coastline map is used to create a mask, i.e. the area of 
the input images where the edge features are correlated 
with the map. Figure 4 shows these features in a [-
20,+20] pixel interval around the coastline. After 
correlation, the {rotation,shift,scaling} transformation 
is computed and used to correct the input image. 
Figure 5 shows the corrected image superimposed 
with the map and Table 4 shows the registration 
results using the edge-based method. 

 
 

 
Figure 2 

Test Patterns Including Grids, Rings, and a Texture 
Mosaic 

 
 

 
Figure 3 

Original AVHRR South Africa Image with Coastline Map 
 

 
Figure 4 -Edge Features Computed Around the Coastline 

 

 
Figure 5 

Corrected AVHRR South Africa Image with Coastline Map 
(Rotation=0 degrees, Shift=(2,3) pixels, Scalings =1) 

 
DATA sa125 sa126 sa127 sa129 sa1300 sa1311 sa1322 sa133 sa1411 sa143 sa146 sa1488

Iter. Edge Match

Register to Map (0,0) (-1,-1) (-1,-1) (-1,-1) (1,1) (1,0) (1,-1) (0,-1) (0,-1) (-1,-3) (-2,-2) (2,3)

Table 4 
AVHRR Data Registration Results (Edge-Based Method) 
(All Rotations=0, All Shifts=1, Only Shifts are Indicated) 

 
 3.3. GOES Data 
  3.3.1. Landmarking (Image to Landmark) 
 Landmark registration has usually two purposes: 
geo-registering new incoming images, as well as 
refining the satellite orbit computation and navigation 
system. Two recent studies dealing with satellite 
meteorological data show significant contribution in 
this domain. The first study [3] deals with Meteosat 
data, while the second one [4] concentrates on GOES 
data. Both studies consider a shift-only transformation, 
and obtain sub-pixel accuracy by up-sampling the data. 
The Meteosat study uses Normalized Cross-Correlation 
(NCC) on edges of landmarks such as coastlines. The 
GOES study uses only lakes and islands for landmarks, 
and evaluates six different matching methods. Among 



 

these methods Cross-Correlation (CC) and NCC of 
enhanced gray levels, as well as Edge Matching are 
evaluated as performing the best; Edge Matching is the 
least sensitive to cloud cover, while (N)CC provides a 
slightly more accurate position estimation. Both studies 
also utilize a masking of the clouds in order to increase 
the reliability of the registration. The GOES study also 
provides a good procedure description and some 
requirements for the choice of the landmarks. 
 
 Our first landmarking tests using our wavelet-
based algorithm were performed on a sequence of five 
successive 128x128 images from the GOES satellite 
over the Cape Cod area, "RAW1" to "RAW5", shown 
in Figure 6. Since we do not currently have a map 
database available which would be used to perform the 
landmark registration, we simulated this process by 
taking as reference "chip" a sub-image extracted from 
the center of the first image "RAW1". This reference 
chip is then automatically registered to the other 
images utilizing the wavelet-based registration 
algorithm described above. 
 

Figure 6 
Wavelet-based Registration of a Sequence of Five GOES 

Images of Cape Cod. 
 
 As expected, when the reference chip is registered 
to the image from which it was extracted, the 
transformation which is computed is (0E,0S), which 
means that there is no shift towards the East or South 
directions. Then, the respective shifts between 
reference chip and input images are given for each of 
the input images "RAW2" to "RAW5", and the results 
are displayed in Figure 1 by a black window located at 
the shifted position which has been automatically 
computed by the algorithm. Qualitatively, these results 
look very satisfactory, and we can notice that even the 
presence of a small cloud in the reference chip which 
then disappears in the following images of the 

sequence does not seem to affect the results. Future 
work will include the use of a cloud masking as well 
as determining the maximum percentage of the image 
which can be covered by clouds without affecting the 
reliability of the algorithm [14]. 
 
  3.3.2. Channel-to-Channel Co-Registration 
   (Image-to-Image)  
 Channel-to-channel co-registration is a 
calibration-type operation which might not be 
necessary to perform for every image received by a 
multispectral instrument. Co-registration might be 
necessary when an instrument has just been launched, 
and then will be computed about twice a day (or even 
less often): at each of these computations a look-up-
table will be updated with the five co-registration 
parameters (rotation, shift, and scaling). Depending on 
the number of channels, instead of computing these 
parameters on every possible pair of channels, a 
reference channel from each focal plane (or each 
group of channels) can be selected and co-registration 
is computed in two steps: 
Step 1:  reference channels are co-registered to the 
highest-resolution channel which is visible at that time 
of the day, 
Step 2:  every channel of a given group is co-
registered to the reference channel of this group. 
For example, for the 5 GOES channels, Channels 1 
(Visible) and 4 (Long Wave-IR) are taken as reference 
channels. So the co-registration is performed on the 
following cascade of pairs of channels: 
Step 1: (1,4) 
Step 2: (4,2), (4,3), (4,5) 
 
 To our knowledge, no systematic study has been 
attained for the co-registration of remote sensing data, 
in particular meteorological satellite data. In this case, 
the issues are somewhat different from the general 
image registration problem: 
• The transformations to be considered are in general 
smaller. For example, we can assume that: 
 •• rotations will vary in the interval [-1º,+1º],                       
 •• translation shifts in [-2pixels,+2pixels],  
 •• scaling factors in [-0.9pixels,+0.9pixels]. 
• Although the observed areas are about the same in 
each channel, the visible features can be quite different, 
which leads to two main differences with the general 
image registration problem: 
 •• coastline registration is not always applicable, 
 •• clouds should be used and not eliminated from 
    the registration process. 
• The highest-resolution channel which is utilized as a 
reference will be different for different times of the day 
and its spatial resolution will be lower at night. 
 
 This set of experiments was performed utilizing 
multiple channels of a sequence of GOES images 
taken during 24 hours in two different sectors, "Baja" 
and "Florida". There are 5 GOES channels with the 
respective spatial resolutions of 1 km and 4 km. Figure 



 

7a shows the 5 channels of a GOES scene of the 
"Baja" sector. After basic preprocessing of the data 
and in order to deal with similar spatial resolution 
data, a wavelet decomposition of Channel 1 is 
performed (see Figure 7b). After 2 decomposition 
levels, the spatial resolution of the decomposed 
Channel 1 is identical to the resolution of Channels 2 
to 5. Then a Sobel edge detection is computed on the 
compressed Channel 1 and on Channels 2 to 5 (see 
Figure 7c), and the edge-based registration described 
above is applied to these edge features. We can notice 
that Channel 3 (Water Vapor Channel) does not 
present the same original or edge features as the other 
channels and this remark explains the following results 
relative to the registration of Channel 3.  
 We tested 33 five-channel scenes corresponding 
to the "Baja" sector. According to the two steps 
described earlier, we chose Channel 1 as the reference 
channel for the visible wavelength, and Channel 4 as 
the reference channel for the infra-red wavelength; 
then the cascade of channels to register is: (1,4), (4,2), 
(4,3), (4,5). For each of the 33 scenes, three tests of 
registration were performed: 
(E1) All original channels are registered 
(E2) Channel 1 was artificially translated by the vector 
(1,2) pixels, leaving Channels 2 to 5 unchanged, 
(E3) Channel 1 was artificially rotated by the angle 0.5 
degrees and translated by the vector (0.5,1.2) pixels, 
while Channels 2 to 5 were unchanged. 
Table 5 shows some results of these experiments, 
detailed for the first three scenes, and then the 
accuracy and the standard deviation (or precision) of 
the rotation and translation parameters is computed 
over the 33 scenes for the four pairs of channels. The 
accuracy and the standard deviation of a parameter "a" 
are computed according to the following formulas: 

Accuracy (a) = 
1

33*3 ∑
i=1

i=33*3
 ( a(i) - true_a)    

and                                  

StdDev (a) = 

  
1

33*3   ∑
i=1

i=33*3
 ( (a(i) - true_a)2) - (Accuracy(a)2 )  

Correlation coefficients, which vary between 0 and 1, 
are also indicated for each registration. The results 
show a perfect registration of Channels 4 and 5 with a 
correlation coefficient close to 1, and a relatively good 
registration of Channels 4 and 2. As we noticed 
previously, the features extracted from Channel 3 do 
not permit a good registration and it is illustrated by 
very low correlation coefficients (around or below 
0.1). In this example, the registration of Channels 1 
and 4 seems to present a bias of (0.95,0) in shift that is 
consistent among the 33 scenes of this sequence. In 
the absence of ground truth data and with correlation 
coefficients of average value, no conclusion could be 
drawn from this result. If additional information was 
available, such registration could indicate a shift in the 
geometric calibration of Channel 1 relative  to the 
other channels. 
 

Image Channels 1/4 Channels 4/2 Channels 4/3 Channels 4/5

R o t . Transl. Correl. R o t . Transl. Correl. R o t . Transl. Correl. R o t . Transl. Corr.

(Deg.) (P ix . ) (Deg.) (P ix . ) (Deg.) (P ix . ) (Deg.) (P ix . )

. . . 1 0 1 6 1 5 . . .

Original 0.15 0.95,0.35 0.44 0 0.2,0.2 0.65 0.15 (-0.85,-0.1) 0.12 0 0,0 0.94

R=0 T=(1,2) 0.1 1.9,2.3 0.44 - - - - - - - - -

R=.5 T=(.5,1.2) 0.5 1.55,1.25 0.44 - - - - - - - - -

. . . 1 0 1 6 3 2 . . .

Original 0.15 0.85,0.1 0.44 0 0,0 0.64 0.35 (-1.6,0.65 ) 0.05 0 0,0 0.94

R=0 T=(1,2) 0.05 1.95,2.05 0.44 - - - - - - - - -

R=.5 T=(.5,1.2) 0.5 1.55,1.25 0.44 - - - - - - - - -

. . . 1 0 1 6 4 5 . . .

Original 0 1,0 0.44 0 0,0 0.65 0.15 (-1.1,0.15 ) 0.11 0 0,0 0.94

R=0 T=(1,2) 0 2,2 0.44 - - - - - - - - -

R=.5 T=(.5,1.2) 0.5 1.55,1.25 0.44 - - - - - - - - -

After 33 Experiments:

Accuracy - 0 . 0 6 ( -0 .72 , -0 .18) 0 (0 .01 ,0 .01) -0 .217 (0 .62 , -0 .19) 0 (0 ,0 )

Stand. Dev. 0 . 0 7 (0 .29 ,0 .13) 0 (0 .04 ,0 .04) 0 . 1 1 5 (0 .85 ,0 .32) 0 (0 ,0 )

Table 5  
Results of Registration Experiments 

for the "Baja" Sector, Fig.7a 

 



 

 
Figure 7a 

GOES Scene; "Baja" Sector; Five Channels  
 (Images reduced for display purposes) 

 

 
Figure 7b - Wavelet Decomposition of Channel 1 shown in Figure 7a 

 

 
Figure 7c - Edge Detection on Level2-Wavelet of Channel 1 and on Channels 2 to 5 of Figure 7a 

 



 

 Similar experiments were conducted with the 
successive scenes of the "Florida" sector shown in 
Figure 8a. In this case, no land features are visible in 
any of the five channels and this example shows how 
channel-to-channel co-registration can be performed 
with only cloud features. Figure 8b shows the edges 
extracted from the five channels and Table 6 details 
the results of the registrations performed for the above 
experiments (E1), (E2) and (E3). These few results 
show good registrations of the five channels 
 
4.  Conclusion and Future Work 
 
 These preliminary experiments utilizing edge- and 
wavelet-based image registration are very promising. 
Still more work needs to be done in the following 
areas: 
- Sub-pixel accuracy: from the previous GOES and 
Meteosat studies, we feel that automatic registration 
schemes based on edge or edge-like features should be 
able to achieve sub-pixel accuracy. Of course a 
landmark registration at such an accuracy assumes that 
a map database will be available at a very high 
resolution (e.g., DMA map) and for a very large 
number of landmarks. If needed, accuracy can also be 
improved by interpolating the correlation curve using 
for example a cubic-spline method. 
- Robustness of Algorithms: The robustness of the 
algorithm will have to be evaluated in function of 
variable conditions (such as time of day), especially 
for the co-registration process, since different channels 
with a lower spatial resolution will have to be utilized 
as reference at night. Robustness will also have to be 
evaluated relative to the issue of cloud occlusion. 

- Dependency on Initial Conditions: The cost of 
computing the spatial correlation of two images is a 
function of the number of steps where the correlation 
is computed. If we perform the correlation of 2 images 
of size NxM  at k different positions, the 
computational cost is equal to 2*k*N*M floating point 
operations. So if the initial search for the five 
parameters is computed in some interval [-n,+n] with a 
step of 1, the correlation cost is: 
2NM*(2*(2n+1)**2+(2n+1)). If the initial search 
interval increases, i.e., the accuracy of the initial 
parameters given by the attitude model decreases, then 
the computational cost of the registration will increase 
according to the above formula. A larger uncertainty 
in the initial conditions might also lead to false paths 
in the search for registration parameters and therefore 
decrease the overall registration accuracy. 
 
 In general, quantitative testing, as well as 
accuracy and simulation studies  will be pursued for 
the two previous types of registration for the purpose 
of multi-temporal registration, landmark navigation, as 
well as channel-to-channel co-registration. 
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Figure 8a - GOES Scene; "Florida" Sector; Five Channels  (Images reduced for display purposes) 

 



 

 
Figure 8b - Edge Detection on Level2-Wavelet of Channel 1 and on Channels 2 to 5 of Figure 8a 

 
 

Image Channels 1/4 Channels 4/2 Channels 4/3 Channels 4/5

R o t . Transl. Corr. R o t . Transl. Corr. R o t . Transl. Corr. R o t . Transl. Corr.

(Deg.) (P ix . ) (Deg.) (P ix . ) (Deg.) (P ix . ) (Deg.) (P ix . )

Original 0 (0,0) 0.47 0 (-.4,-.4) 0.68 0 (0,0) 0.72 0 (0,0) 0.98

R=0 T=(1,2) 0 (1,2) 0.47 - - - - - - - - -  
Table 6 - Results of Co-registration Experiments for the Scene of the "Florida" Sector (Fig.8a) 
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